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ABSTRACT fairness, robustness, safety, and scalability of Al systems [44, 81].

Al models are increasingly applied in high-stakes domains like
health and conservation. Data quality carries an elevated signifi-
cance in high-stakes Al due to its heightened downstream impact,
impacting predictions like cancer detection, wildlife poaching, and
loan allocations. Paradoxically, data is the most under-valued and
de-glamorised aspect of Al In this paper, we report on data practices
in high-stakes Al, from interviews with 53 Al practitioners in India,
East and West African countries, and USA. We define, identify, and
present empirical evidence on Data Cascades—compounding events
causing negative, downstream effects from data issues—triggered
by conventional AI/ML practices that undervalue data quality. Data
cascades are pervasive (92% prevalence), invisible, delayed, but
often avoidable. We discuss HCI opportunities in designing and
incentivizing data excellence as a first-class citizen of Al resulting
in safer and more robust systems for all.
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1 INTRODUCTION

Data is the critical infrastructure necessary to build Artificial In-
telligence (AI) systems [44]. Data largely determines performance,
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Paradoxically, for Al researchers and developers, data is often the
least incentivized aspect, viewed as ‘operational’ relative to the
lionized work of building novel models and algorithms [46, 125]. In-
tuitively, AT developers understand that data quality matters, often
spending inordinate amounts of time on data tasks [60]. In practice,
most organisations fail to create or meet any data quality standards
[87], from under-valuing data work vis-a-vis model development.

Under-valuing of data work is common to all of AI develop-
ment [125]'. We pay particular attention to undervaluing of data
in high-stakes domains® that have safety impacts on living beings,
due to a few reasons. One, developers are increasingly deploying
AI models in complex, humanitarian domains, e.g., in maternal
health, road safety, and climate change. Two, poor data quality
in high-stakes domains can have outsized effects on vulnerable
communities and contexts. As Hiatt et al. argue, high-stakes efforts
are distinct from serving customers; these projects work with and
for populations at risk of a litany of horrors [47]. As an example,
poor data practices reduced accuracy in IBM’s cancer treatment Al
[115] and led to Google Flu Trends missing the flu peak by 140%
[63, 73]). Three, high-stakes Al systems are typically deployed in
low-resource contexts with a pronounced lack of readily available,
high-quality datasets. Applications span into communities that
live outside of a modern data infrastructure, or where everyday
functions are not yet consistently tracked, e.g., walking distances
to gather water in rural areas—in contrast to, say, click data [26].
Finally, high-stakes Al is more often created at the combination of
two or more disciplines; for example, Al and diabetic retinopathy,
leading to greater collaboration challenges among stakeholders
across organizations and domains [75, 121].

Considering the above factors, currently data quality issues in Al
are addressed with the wrong tools created for, and fitted to other
technology problems—they are approached as a database problem,
legal compliance issue, or licensing deal. HCI and CSCW scholar-
ship have long examined the practices of collaboration, problem
formulation, and sensemaking, by humans behind the datasets,

Data work is broadly under-valued in many sociotechnical domains like [58, 85]
2We extend the vision of AI for Social Good (i.e., using Al for social and environmental
impact) and Data for Good (i.e., providing data and education to benefit non-profit or
government agencies) with AI for high-stakes domains involving safety, well-being
and stakes (e.g., road safety, credit assessment).
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including data collectors and scientists, [69, 86, 127], and are de-
signing computational artefacts for dataset development [53]. Our
research extends this scholarship by empirically examining data
practices and challenges of high-stakes Al practitioners impacting
vulnerable groups.

We report our results from a qualitative study on practices and
structural factors among 53 Al practitioners in India, the US, and
East and West African countries®, applying Al to high-stakes do-
mains including landslide detection, suicide prevention, and cancer
detection. Our research aimed to understand how practitioners
conceptualised and navigated the end-to-end Al data life cycles.

In this paper, we define and identify Data Cascades: compounding
events causing negative, downstream effects from data issues, result-
ing in technical debt* over time. In our study, data cascades were
widely prevalent: 92% of Al practitioners reported experiencing
one or more, and 45.3% reported two or more cascades in a given
project. Data cascades often resulted from applying conventional
Al practices that undervalued data quality. For example, eye dis-
ease detection models, trained on noise-free training data for high
model performance, failed to predict the disease in production upon
small specks of dust on images. Data cascades were opaque and de-
layed, with poor indicators and metrics. Cascades compounded into
major negative impacts in the downstream of models like costly
iterations, discarding projects, and harm to communities. Cascades
were largely avoidable through intentional practices.

The high prevalence of fairly severe data cascades point to a
larger problem of broken data practices, methodologies, and incen-
tives in the field of AL Although the AI/ML practitioners in our
study were attuned to the importance of data quality and displayed
deep moral commitment to vulnerable groups, data cascades were
disturbingly prevalent even in the high stakes domains we studied.
Additionally, our results point to serious gaps in what Al practition-
ers were trained and equipped to handle, in the form of tensions in
working with field partners and application-domain experts, and
in understanding human impacts of models—a serious problem as
Al developers seek to deploy in domains where governments, civil
society, and policy makers have historically struggled to respond.
The prevalence of data cascades point to the contours of a larger
problem: residual conventions and perceptions in AI/ML drawn
from worlds of ‘big data’—of abundant, expendable digital resources
and worlds in which one user has one account [108]; of model val-
ourisation [125]; of moving fast to proof-of-concept [8]; and of
viewing data as grunt work in ML workflows [111]. Taken together,
our research underscores the need for data excellence in building
Al systems, a shift to proactively considering care, sanctity, and
diligence in data as valuable contributions in the Al ecosystem. Any
solution needs to take into account social, technical, and structural
aspects of the Al ecosystem, which we discuss in our paper.

Our paper makes three main contributions:

(1) Conceptualising and documenting data cascades, their charac-

teristics, and impact on the end-to-end Al lifecycle, drawn

3We sampled more widely in Sub-Saharan Africa due to the nascent Al Ecosystem and
redact identifiable details like country, to protect participant identity (see Methodology
for more details).

4In 1992, Ward Cunningham put forward the metaphor of technical debt to describe the
build-up of cruft (deficiencies in internal quality) in software systems as debt accrual,
similar to financial debt [29] (also observed in ML [111].)
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from an empirical study of data practices of international Al
practitioners in high-stakes domains.

(2) Empirically derived awareness for the need of urgent structural
change in Al research and development to incentivise care
in data excellence, through our case study of high-stakes Al

(3) Implications for HCI: we highlight an under-explored but sig-
nificant new research path for the field in creating interfaces,
processes, and policy for data excellence in AL

2 RELATED WORK
2.1 Datain HCI

Prior research in HCI has drawn particular attention to work prac-
tices and challenges faced by practitioners in working with data
[48, 65, 86, 93, 96]. Feinberg describes data as a design material
and our role as designers of data, not its appropriators [35]. Re-
searchers have also studied the ways in which data is rarely used as
given, and often needs to be created or handcrafted using intricate
transformation practices [67, 96].

An emerging stream of research in HCI and CSCW focuses on the
work and collaboration practices of data scientists [66, 77, 94, 127].
Muller et al. extend and outline five approaches of data scientists to
perform analyses: discovery, capture, design, curation, and creation
of data [86]. Koesten et al. identify a need to understand the ways in
which collaboration occurs for data on a spectrum—from creating
and sharing inside and outside the organisation or reusing another
person’s data with limited interaction with the creator [69]. Practi-
tioners have been shown to collaborate much less around datasets,
relative to collaboration around code [127]. Data documentation,
which is a crucial aspect of facilitating collaboration, is well studied
in the database and data management community [19, 23]. How-
ever, documentation of data suffers from a lack of standards and
conventions within the ML community [40].

Prior work in HCI and CSCW does not appear to explicitly focus
on data practices in high-stakes domains, which are proliferating,
and are marked by complex challenges of data scarcity, downstream
impacts, and specialised inter-disciplinary knowledge for working
with and understanding data (e.g., what a fractured bone looks like
in an X-Ray might be beyond an Al practitioner’s area of expertise).
Several studies have focused on data practices of data scientists; our
research extends the focus on data to ML practitioners, including
engineers, researchers, and academics who build and deploy AI/ML
technologies. Prior research has focused primarily on Western pop-
ulations, that often have fewer resource constraints, and greater
acceptance and understanding of Al in their communities. Our re-
search presents an international analysis of data-related practices
and issues in India, East and West African countries, and the US.

2.2 Politics of data

There is substantial work in HCI and STS to establish that data
is never ‘raw’ [41], but rather is shaped through the practices of
collecting, curating and sensemaking, and thus is inherently so-
ciopolitical in nature. Through their study of public health data,
Pine and Liboiron [99] demonstrate how data collection is shaped by
values and decisions about “what is counted and what is excluded,
and what is considered the best unit of measurement.” Vertisi and
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Dourish [123] examine data in an interactional context and ar-
gue for considering the contexts of production in data economies,
alongside use and exchange to clarify the ways in which data ac-
quires meaning. Taylor et al. [118] drew attention to this need in
their research on considering the physical and social geography in
which data, people, and things are situated, and to represent the
rich geo-tapestry within which data is entangled.

Critical data studies researchers have demonstrated longstand-
ing interest in the ‘discretionary’ [95] practices shaping data-driven
systems and how they are designed and used [6, 16, 33], and the
ways in which data science teams are constituted [106]. Passi and
Jackson [93] describe how data work is often invisibilized through
a focus on rules, arguing that empirical challenges render invisi-
ble the efforts to make algorithms work with data. This makes it
difficult to account for the situated and creative decisions made
by data analysts, and leaving behind a stripped down notion of
‘data analytics’. Passi and Sengers [95] turn their attention to the
negotiations in designing data science systems, on how a system
should work and is evaluated.

Beyond data scientists, there are many roles in the process of
preparing, curating, and nurturing data, which are often under-paid
and over-utililized. Many researchers have pointed to the under-
valued human labour that powers Al models (e.g., heteromation
[34], fauxtomation [117], and “menial” vs. “innovative” work dis-
tinctions [56]. Meller et al. [85] describe the crucial data work
through a framework of meaningful registration, digital organizing,
and concern for ethics. They discuss how the data work of clerical
hospital workers is complex, skillful, and effortful [85]. However,
data work has been shown to be invisibilized among Mechanical
Turkers by Martin et al. [79], and among frontline health workers
in India by Ismail and Kumar [58]. Through a post-colonial fem-
inist perspective, Ismail and Kumar [58] highlight how frontline
health workers in India navigate the multiple demands placed on
them, and how their data work is severely under-compensated. Our
research extends discourses on how data workers play a critical
role in creating and maintaining Al systems, and the ways in which
their work can have downstream impacts.

2.3 Data quality interventions

Real-world datasets are often ‘dirty’ and come with a variety of data
quality problems [1]. However, data quality is crucial to ensure that
the ML system using the data can accurately represent and predict
the phenomenon it is claiming to measure. A well-established, and
steadily growing, body of work focuses on understanding and im-
proving data quality to avoid the garbage in, garbage out problem
[45, 103].

Kandel et al. reveal that practitioners consider data wrangling
tedious and time-consuming [62]. Thus, improving quality through
transformations [52] and building human-in-the-loop data cleaning
systems[61] are well-studied research areas in the data management
community. Practitioners often work with a set of assumptions
about their data during analysis and visualisation, which guides
their data transformations [62]. Interactive data cleaning focuses
on making this process easier, because data transformations can be
difficult to specify and reuse across multiple tasks [61, 72, 102]. For
instance, Wrangler suggests potentially relevant transforms, and
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maintains a history of transformation scripts to support review and
refinement [61]. Data cleaning and wrangling systems address data
quality issues by using integrity constraints [27], type inference
[36], schema matching [43], outlier detection [51] and more.

Researchers have created several tools to support the creation
of ML ‘pipelines’ and make these workflows manageable [21, 54,
70, 72, 76]. Similar to Code Linters common in traditional SE, Data
Linter is a tool to inspect ML datasets, identify potential data issues
and suggest transformations to fix these issues [54]. Breck et al.
created a data validation system to detect anomalies in Machine
learning pipelines [21]. Other frameworks to discover data bugs
and clean data include ActiveClean and BoostClean [70, 72]. Such
interventions highlight the importance of catching data errors using
mechanisms specific to data validation, instead of using model
performance as a proxy for data quality [120]. In addition to this, it
is crucial to test and monitor data as much as we focus on the testing
of code. Breck et al. provided a set of 28 actionable tests for features,
data and models [21]. There is extensive literature on ML testing for
detecting differences between the actual and expected behaviour
of ML pipelines; for a survey, see [129]. Researchers in the field
of HCI and HCOMP have demonstrated a longstanding interest
in making use of crowdsourcing to generate ML data [25, 128], to
support creation of better task designs for raters [59], compute inter-
rater reliability, design incentives [50], and improve the quality of
crowdsourced data [30], though these areas are less well known in
the ML community [122].

Prior research on developing data quality systems has largely
focused on data cleaning and wrangling. However, high-stakes do-
mains extend both, into upstream (data creation) and downstream
(live data after deployment)—our research extends this growing
body of work by focusing on the end-to-end lifecycle of data in
high-stakes domains. For example, viewing data as a dynamic entity
points us to drifts and hidden skews®. Prior work on data systems
appears to be built for intra-organisational Al development. Our
research extends current discourses to high-stakes AI which typi-
cally involve cross-organisational and inter-disciplinary work; for
example, dataset definition and labelling accuracy all depend on
application-domain expertise that comes from collaboration with
field partners and domain experts.

2.4 Machine Learning in production

Production is the process of deploying systems ‘live’, with a need
to keep systems running smoothly and scaling efficiently®. Prior
work has substantially advanced and documented issues in produc-
tionizing software, including ML code. The extra effort to add new
features is the interest paid on the technical debt [29], which is
particularly challenging for production systems. Sculley et al. [111]
extend the notion of technical debt to ML systems by identifying
and outlining the various ways in which teams could accumulate
debt through aspects of ML-specific design elements. Fowler ar-
gues that unacknowledged debts are bad, further characterized as
reckless or inadvertent [39]. In particular, due to the complexities
of data-driven ML systems, they point out that is important to be

SDrifts are supported by end-to-end cloud platforms like AWS and Azure, but cloud
platforms are not uniformly adopted, including in our study [9, 60]
®https://engineering.fb.com/category/production-engineering/
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aware of, and engage with debt trade-offs, which can cause harm
in the long term.

Multiple recent studies examine the challenges of production
machine learning [6, 100, 101]. For example, ML practitioners spend
a significant portion of their time analysing their raw datasets [100].
Regardless, ML teams continue to struggle the most with aspects of
data acquisition and management [6]. Since ML largely depends on
its data, having high-quality data has a critical role in developing
reliable and robust ML models, as opposed to only a good training
algorithm [101]. Nevertheless, practitioners often face issues with
understanding the data without context, validating data, and dealing
with distribution skews between training and serving data [100].

Machine Learning workflows are fundamentally iterative and
exploratory in nature [7, 52, 71, 96]. These iterations are charac-
terised as loops which occur within an ML system (direct) or due
to influence from another system (hidden) [111]. To achieve the
desired performance, practitioners have to iterate both on data and
ML model architectures. Hohman et al. identified common types of
data iterations and created a tool to visualise them [52].

Our work extends this body of research by presenting complex
downstream impacts from data cascades, which were widely preva-
lent and fairly severe in our study. Data cascades largely manifest in
deployments of Al systems, affecting communities downstream. We
also describe the ways in which some of these iterations and feed-
back loops can be inefficient, extremely costly for teams working
with multiple resource constraints and cause long-term harm.

3 METHODOLOGY

Between May and July 2020, we conducted semi-structured inter-
views with a total of 53 Al practitioners’ working in high-stakes
applications of Al development. Interviews were focused on (1)
data sources and Al lifecycles; (2) defining data quality; (3) feedback
loops from data quality; (4) upstream and downstream data effects;
(5) stakeholders and accountability; (6) incentive structures; and
(7) useful interventions. Each session focused on the participant’s
experiences, practices, and challenges in Al development and lasted
about 75 minutes each.

Participant recruitment and moderation. In our sample, Al
practitioners were located in, or worked primarily on projects based
in, India (23), the US (16), or East and West African countries (14).
We sampled more widely in Africa due to the nascent AI Ecosys-
tem compared to other continents [84], with 14 total interviews
including Nigeria (10), Kenya (2), Uganda (1), and Ghana (1). We
interviewed 45 male and 8 female Al practitioners. Refer to Table 1
for details on participant demographics. Interviews were conducted
using video conferencing, due to COVID-19 travel limitations.

On average, an Al practitioner in our study had one or more
higher education degrees in Al related fields and had worked for
greater than 4-5 years in AL While we interviewed Al practitioners
working in multiple institution types, varying from startups (28),
large companies (16), to academia (9), all participants were involved
in Al development in critical domains with safety implications.
Participants in our study were technical leads, founders, or Al
developers.

7 Although our participants had different job roles (including, in research), all were
focused on applied deployments in high-stakes domains.
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Many participants had experience with multiple Al technologies,
and had applied Al technologies to multiple domains; we report the
primary Al technology and domain of application at the time of the
interview. Applied uses of Al technology in academia meant there
were partnerships with government, private business, and startups.
For a characterisation of the type of Al [113], refer to table 1.

We recruited participants through a combination of developer
communities, distribution lists, professional networks, and personal
contacts, using snowball and purposive sampling [89] that was it-
erative until saturation. We conducted all interviews in English
(preferred language of participants). Each participant received a
thank you gift in the form of a gift card, with amounts localised in
consultation with regional experts (100 USD for the US, 27 USD for
India, 35 USD for East and West African countries). Due to work-
place restrictions, we were not able to compensate government
employees. Interview notes were recorded in the form of field notes
or video recordings, transcribed within 24 hours of each interview
by the corresponding moderator. Our research team is constituted
by members with HCI, Al, human computation, and data quality
research backgrounds. Interviews were conducted by authors lo-
cated in India, West Africa, and the United States. All researchers
were involved in the research framing, data analysis, and synthesis.

Analysis and coding. Following [119], two members of the
research team independently read all units multiple times, and cate-
gories (unit of analysis) were initially identified by each researcher,
together with a description and examples of each category, until
a saturation point was reached. Our upper level categories were
guided by the evaluation aims, comprising (1) defining the right
data for a project; (2) practices to define data quality; (3) entry
points of data problems; (4) impacts and measurement of data qual-
ity; (5) model production challenges; (6) incentives; (7) other human
factors; and (8) resourcing and infrastructure. The categories were
iteratively refined through group discussions with meeting, diverg-
ing, and synthesizing during the analysis phase. Further iterations
resulted in the formation of lower-level categories such as “domain
expertise: misaligned goals”. These categories were consolidated
into three top-level categories of characteristics of data cascades,
motivating factors, and cascade types, and 18 nested categories such
as incentives, signals, domain experts, and impacts. Since codes are
our process, not product [80], IRR was not used.

While we present general data practices and basic Al practi-
tioner development models, all interventions, practices, and work-
ing methods were reported by participants as part of their own expe-
riences, rather than as “best practices” (see [97]). Numbers reported
throughout the paper represent the percentage of participants who
self-reported a trigger, impact, or signal of data challenges in the
interviews. Percentages are derived from coding each transcript for
each individual’s experiences of cascades.

Research ethics and anonymization. During recruitment, par-
ticipants were informed of the purpose of the study, the question
categories, and researcher affiliations. Participants signed informed
consent documents acknowledging their awareness of the study
purpose and researcher affiliation prior to the interview. At the
beginning of each interview, the moderator additionally obtained
verbal informed consent. We stored all data in a private Google
Drive folder, with access limited to the research team. To protect par-
ticipant identities, we deleted all personally identifiable information
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Type Count

Roles Al Engineer (17), Startup Founder (17), Professor (6), Data Scientist (6), Research Scientist (6),

Program Manager (1)

Location

India (23), US (16), Nigeria (10), Kenya (2), Ghana (1), Uganda (1)

Gender Male (45), Female (8)

Setting Startup (28), Large company (16), Academic (9)

Domain

Health and wellness (19) (e.g., maternal health, cancer diagnosis, mental health)

Food availability and agriculture health (10) (e.g., regenerative farming, crop illness)
Environment and climate (7) (e.g., solar energy, air pollution)

Credit and finance (7) (e.g., loans, insurance claims)

Public safety (4) (e.g., traffic violations, landslide detection, self driving cars)
Wildlife conservation (2) (e.g., poaching and ecosystem health)

Aquaculture (2) (e.g., marine life)

Education (1) (e.g., loans, insurance claims)

Robotics (1) (e.g., physical arm sorting)

Fairness in ML (1) (e.g., representativeness)

Al Type
Robotics: (1)

Machine Learning: (24), Computer Vision: (21), Natural Language Processing: (5), Game Theory: (2),

Table 1: Summary of participant demographics

in research files. We redact identifiable details when quoting par-
ticipants, e.g., we use East Africa or West Africa, given the limited
number of Al practitioners in high-stakes domains in Sub-Saharan
Africa, and our limited sampling.

Limitations. All interviews and analysis were conducted over
video and phone, due to the COVID-19 pandemic. As a result of
travel restrictions, we were unable to include shadowing of work
flows and contextual inquiry that would have otherwise been pos-
sible. However, we feel that the self-reported data practices and
challenges have validity, and sufficient rigour and care was applied
in covering the themes through multiple questions and solicitation
of examples. Gender distribution in our study is reflective of the Al
industry’s gender disparities [126] and sampling limitations.

4 FINDINGS

In this section we present data cascades, their indicators and im-
pacts (section 4.1), and position them in a broader landscape of
high-stakes domains and the Al ecosystem (section 4.2). Our study
identifies four root causes for data cascades and corresponding
practitioner behaviours (section 4.3).

4.1 Overview of data cascades

We define Data Cascades based on the empirical results in this
study as compounding events causing negative, downstream effects
from data issues, that result in technical debt over time. In our study,
92% experienced at least one cascade. Data cascades are influenced
by, (a) the activities and interactions of actors involved in the AI
development (e.g., developers, governments, and field partners),
(b) the physical world and community in which the Al system is
situated (e.g., rural hospitals where sensor data collection occurs).
We observed the following properties of data cascades:

e Opaque: data cascades are complex, long-term, occur fre-
quently and persistently; they are opaque in diagnosis and
manifestation—with no clear indicators, tools, and metrics to
detect and measure their effects on the system. In the absence
of well-defined and timely signals, practitioners turned to

proxy metrics (e.g., accuracy, precision, or F1 score), where
the unit of measurement is the entire system, not datasets.

o Triggered by: data cascades are triggered when conven-
tional Al practices are applied in high-stakes domains, which
are characterised by high accountability, inter-disciplinary
work, and resource constraints. For example, practitioners
viewed data as operations, moved fast, hacked model perfor-
mance (through hyperparameters rather than data quality),
and did not appear to be equipped to recognise upstream
and downstream people issues.

e Negative impact: data cascades have negative impacts on
the Al development and deployment process, leading to mul-
tiple and unexpected strategies sometimes spurring further
cascades, always causing technical debt. Some of the severe
data cascades in our study led to harm to beneficiary commu-
nities, burnout of relationships with stakeholders, discarding
entire datasets, and performing costly iterations.

e Multiple cascades, 45.3% experienced two or more cas-
cades each, typically triggered in the upstream of model
building, manifesting in the downstream of the model devel-
opment or deployment.

e Cascades are often avoidable by step-wise and early inter-
ventions in the development process, which were, however,
exceptional due to factors like undervaluing data, scarcity
of data, and partner dependencies.

4.2 Broader landscape for data cascades

Before we turn to specific cascades in the next section, here we
provide an understanding of cross-cutting factors that influence
data cascades in high-stakes domains.

Incentives and currency in Al An overall lack of recognition
for the invisible, arduous, and taken-for-granted data work in Al
led to poor data practices, resulting in the data cascades below. Care
of, and improvements to data are not easily ‘tracked’ or rewarded,
as opposed to models. Models were reported to be the means for
prestige and upward mobility in the field [112] with ML publica-
tions that generated citations, making practitioners competitive
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Interacting with physical world brittleness
@ Inadequate application-domain expertise
Conflicting reward systems

@ Poor cross-organizational documentation

=» Impacts of cascades

-+ Abandon / re-start process

Figure 1: Data cascades in high-stakes Al Cascades are opaque and protracted, with multiplied, negative impacts. Cascades are
triggered in the upstream (e.g., data collection) and have impacts on the downstream (e.g., model deployment). Thick red arrows
represent the compounding effects after data cascades start to become visible; dotted red arrows represent abandoning or re-
starting of the ML data process. Indicators are mostly visible in model evaluation, as system metrics, and as malfunctioning

or user feedback.

for AI/ML jobs and residencies. “Everyone wants to do the model
work, not the data work” (P4, healthcare, India). Many practitioners
described data work as time-consuming, invisible to track, and of-
ten done under pressures to move fast due to margins—investment,
constraints, and deadlines often came in the way of focusing on im-
proving data quality. Additionally, it was difficult to get buy-in from
clients and funders to invest in good quality data collection and
annotation work, especially in price-sensitive and nascent markets
like East and West African countries and India. Clients expected
‘magic’ from Al—a high performance threshold without much con-
sideration for the underlying quality, safety, or process—which led
to model performance ‘hacking’ for client demonstrations among
some practitioners.

Data education Lack of adequate training on Al data quality,
collection, and ethics led to practitioner under-preparedness in
dealing with the complexity of creating datasets in high-stakes
domains. Al courses focused on toy datasets with clean values
(e.g., UCI Census, Kaggle datasets), but Al in practice required the
creation of data pipelines, often from scratch, going from ground
truth to model maintenance. As P37 working on healthcare in a
West African country explained, “In real life, we never see clean data.
Courses and trainings focus on models and tools to use but rarely
teach about data cleaning and pipeline gaps.”; also illustrated by P27,
a faculty in the US, “we in CS are never trained, nor [are we] thinking
actively about data collection.” Computer Science curricula did not
include training for practical data aspects such as dealing with
domain-specific ‘dirty data’®, dealing with live data, defining and
documenting datasets, designing data collection, training raters,
or creating labelling task designs. In the US, most practitioners
completed AI specialisation in graduate programs. In India and
East and West African countries, most practitioners self-learned
after their Computer Science degrees—but in all these routes, data
engineering was under-emphasised.

8‘Dirty data’ is common parlance in AI/ML to refer to data errors. Richardson et al.
. [104] complicate how dirty data can be influenced by corrupt, biased, or unlawful
practices.

Data bootstrapping High-stakes Al domains required specialised
datasets by region, demographics, phenomena, or species, especially
in under-digitised environments (e.g., spread of Malaria in rural
Tamil Nadu, elephant movements in Maasai Mara). 74% of prac-
titioners undertook data collection efforts from scratch, through
field partners—a task which many admitted to being unprepared
for, and some reported giving up on Al projects as a result. Practi-
tioners from the US largely bootstrapped from existing sources and
established digital infrastructures, e.g., satellite data, sensor data,
and public datasets, whereas the majority of practitioners in East
and West African countries and India collected data from scratch
with field partners and made online datasets work for local con-
texts (to avoid bureaucratic and local regulatory processes) [116].
Bootstrapping with data from another locale led to generalizability
limitations, e.g., P20 (clean energy, US) used satellite data from
Northeast US to bootstrap model training, but were unable to apply
to the target location due to different terrain, clouds, and pollution.
Practitioners reported facing situations where they had to “work
with what they have” (P16, healthcare, US), and did not always have
the “selectable capability” (P29, environment and climate, US) to
discard poor quality examples because of limited data in the first
place. Many practitioners reported using data collected for non-
Al purposes, e.g., migration surveys, but ran into issues with ML
feature-richness.

Downstream accountability One of the defining characteris-
tics of high-stakes Al is the implied accountability to living beings.
Data cascades occurred as practitioners ran up against challenges
because of data scarcity and downstream methodologies in work-
ing with vulnerable groups. Stakes from poor performance were
primarily in the form of harm to the community, but also resulted
in poor performance and low user trust. “If you build this model
(e.g., predicting [eye disease]) and it predicts that this person does
not have it when they do, you leave this person to go blind.” (P30,
healthcare, a West African country). Many reported how consumer
Al, e.g., ad tech, typically aimed for 70-75% accuracy, whereas for
high-stakes every extra 1% was crucial. “There isn’t a clear method-
ology for how to do it [test models] effectively without leading to some
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kind of harm to the patient. Everything starts with risk.” (P10, P11,
P12, healthcare, USA). Application domains in the US in our study
could be described as ‘second wave’ Al, a broader interpretation
focused on ecology, climate, and well-being, whereas domains in
India and East and West African countries were more closely tied
to sustainable development goals like micro-finance, healthcare,
and farming, more directly tied to human impacts.

4.3 Data cascade triggers and practices

We present the various data cascades and surrounding behaviours
observed in our study, sorted by frequency. Table 2 gives an overview
of four core cascades—triggers, impacts and signals—and their dis-
tribution. Impacts varied in severity, from wasted time and effort
to harms to beneficiaries. The most severe data cascades were also
long-drawn and completely unknown to practitioners; in some
cases, taking 2-3 years to manifest.

4.3.1 Interacting with physical world brittleness (54.7%). In high-
stakes domains, Al systems transitioned from well defined, digitised,
and understood environments to brittle deployments closely inter-
acting with previously not-digitised physical worlds (almost by
definition due to its involvement in socio-economic domains), e.g.,
air quality sensing, ocean sensing, or ultrasound scanning. While
all production Al systems are challenged by the inevitable changes
in the external world, high-stakes Al have have even more reasons
for a model to break—due to limited training data, complex under-
lying phenomena, volatile domains, and changes to regulations. In
high-stakes domains, interaction with the external world spanned
both the upstream (data sources) and downstream (live data and
data instruments) of ML models. Data cascades often appeared in
the form of hardware, environmental, and human knowledge drifts.
As an example of a cascade, for P3 and P4 (road safety, India), even
the slightest movement of a camera due to environmental condi-
tions resulted in failures in detecting traffic violations, “10 different
sources may have undergone changes. Cameras might move from the
weather. AI models can fail completely.”. Conventional Al practices
on pristine training data (but messy live data), as well as a lack of
training on working with messy real-world data appeared to trigger
these cascades. Data cascades here took the longest to manifest,
taking up to 2-3 years to emerge, almost always in the production
stage. Impacts included complete model failure, abandonment of
projects, and harms to beneficiaries from mispredictions.
Cascades triggered by ‘hardware drifts’: e.g., cameras and sen-
sors, during the data generation for the training dataset and upon
deployment. 75% of practitioners used a hardware component as
a part of their data capture infrastructure. To ensure good model
performance, data collection efforts often occurred in controlled
environments in-house or by giving data capture specifications to
their data collection teams. As described by practitioners, produc-
tion environments are “utter chaos” and bring in various forms of
“bad data” (P4, healthcare, India). P44 (healthcare, India) described
how technical errors filtered through if the “[eye disease] hard-
ware is not serviced properly every 12 months”. Similarly, P9 (water
consumption, India) described their complex approach of digging
into the earth, cutting into pipes, and inserting sensing hardware,
making it hard to detect subterranean sensor drifts. Artefacts like
fingerprints, shadows, dust on the lens, improper lighting, and pen
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markings were reported to affect predictions. Rain and wind moved
image sensors in the wild (e.g., in camera traps and traffic detection),
leading to incorrect model results. Models were reported to mistake
spurious events as signals for phenomena, leading to complete Al
system failures in some cases, e.g., “Suppose an image is out of focus,
there is a drop of oil, or a drop of water on the image, appearing blurry
or diffused. A model which is looking at this can easily get confused
that an out-of-focus image is cancer.” (P52, healthcare, India).
Cascades triggered by ‘environmental drifts’: resulted from changes
in the environment or climate, e.g., P29 (landslide segmentation,
US) reported that presence of cloud cover, new houses or roads,
or vegetation growth posed challenges because their model was
comparing pre- and post-images and misconstruing the changes
as landslides. In some cases, joins of live data across different ge-
ographies and environments triggered cascades, such as disparate
emissions standards across countries (P20, clean energy, US), or
different medical scanning procedures (P44, healthcare, India).
Cascades triggered by ‘human drifts’: where social phenomena
or community behaviour led to changes in live data. Furthermore,
with amendments to policies and regulations in the problem do-
main, features may cease to be relevant (e.g., banking regulations
affecting data capture). P15, a researcher in the US recalled a case
where someone they knew built a medication tracking system for
older adults. They had stopped receiving data from a user, who was
detected to have unfortunately died and had stopped recording data
a few days prior. The user presented behaviours that the model
could not account for (e.g., they switched off phone sensors). P15
was concerned that lack of continuous data for mental health con-
ditions could be a sign of worsening conditions or suicide (“the best
data to detect in time”). Similarly, P48 (healthcare, US) explained
how creating an Al model for the COVID-19 pandemic on day 1
versus day 100 required a total change in various assumptions since
the pandemic and human responses were volatile and dynamic.
To address these cascades, a few practitioners consistently moni-
tored their data sources (often, at an example level), and looked for
spurious changes through model performance degradation, and re-
trained models. In rare cases, practitioners intentionally introduced
noise in training data to improve robustness, through noisy images
or synthetically modified data. As P44 above shared, “Many times,
the quality of the dataset goes down. But it makes the model better and
robust enough to ignore that image”. A few practitioners invested in
scalable data literacy for system operators and field partners, noting
how operator trust and comfort with the Al system ultimately led
to better data and inferences.
4.3.2 Inadequate application-domain expertise (43.4%). A data cas-
cade was triggered when Al practitioners were responsible for data
sense-making (defining ground truth, identifying the necessary fea-
ture sets, and interpreting data) in social and scientific contexts in
which they did not have domain expertise. Answering these ques-
tions entailed an understanding of the application domain, social
aspects, and embedding context [118, 123]. For instance, diagnos-
ing fractured bones, identifying locations that could be poaching
targets, and congenital conditions leading to preterm babies all
depended on expertise in biological sciences, social sciences, and
community context. Several practitioners worked with domain ex-
perts and field partners; however, they were largely involved in
data collection or trouble-shooting, rather than in deep, end-to-end



CHI ’21, May 8-13, 2021, Yokohama, Japan

Sambasivan et al.

Cascades

Triggers

Impacts Signals

Interacting with physical
world brittleness (54.7%)
IN: 56.5%, EA & WA: 42.9%, US: 62.5%

« Pristine training data (messy live
data)

« lll-equipped to work with volatile
real-world data

« Harms to beneficiaries
« Complete model failure
« Abandonment of projects

« System performance in
deployment

Inadequate application-
domain expertise (43.4%)
IN: 47.8%, EA & WA: 57.1%, US: 25%

« Overt reliance on technical
expertise in sensemaking

« Moving fast to proof-of-concept

« Harms to beneficiaries
« Costly iterations

« System performance
« Post-hoc consulting with domain
experts

Conflicting reward
systems (32.1%)

« Misaligned incentives

« Inadequate data literacy among

IN: 30.4%, EA & WA: 57.1%, US: 12.5%
partners

« Viewing data as non-technical

« Costly iterations « System performance

- Moving to a new data source + Burned partner relations

« Quitting the project

Poor cross-organisational
documentation (20.8%) tion
IN:17.4%, EA & WA: 35.7%, US: 12.5%

« Neglecting value of data documenta-

« Discarding part/entire dataset
» Wasted time and effort

« Manual instances reviews,
mostly by ‘chance’

Table 2: Prevalence and distribution of data cascades. IN is short for India, EA & WA for East African and West African countries

respectively, and US for the United States.

engagements. Practitioners described having to take a range of
data decisions that often surpassed their knowledge, not always
involving application-domain experts e.g., discarding data, correct-
ing values, merging data, or restarting data collection—leading to
long, unwieldy and error-prone data cascades. As an example of
a cascade, P18 (wildlife conservation, India) described how after
deploying their model for making predictions for potential poach-
ing locations, patrollers contested the predicted locations as being
incorrect. Upon further collaboration with the patrollers, P18 and
team learned that most of the poaching attacks were not included
in the data. As the patrollers were already resource-constrained,
the mispredictions of the model ran the risk of leading to over-
patrolling in specific areas, leading to poaching in other places.
In some cases, data collection was expensive and could only be
done once (e.g., underwater exploration, road safety survey, farmer
survey) and yet, application-domain experts could not always be
involved. Conventional Al practices like overt reliance on techni-
cal expertise and unsubstantiated assumptions of data reliability
appeared to set these cascades off. Application-domain expertise
cascades were costly: impacts came largely after building models,
through client feedback and system performance, and long-winded
diagnoses. Impacts included costly modifications like going back to
collect more data, improving labels, adding new data sources, or
severe unanticipated downstream impacts if the model had already
been deployed (see figure 1)

Next, we describe two prominent examples of application-domain
expertise issues that occurred in the Al lifecycle: dealing with sub-
jectivity in ground truth, defining and finding representative data.

Cascades triggered by dealing with subjectivity in ground truth
High-stakes Al requires specialised, subjective decision-making
in defining the ground truth, and breadth and number of labels
[13]. Example of ground truth decisions are detecting cancer in
pathology images, identifying quality of agriculture produce, and
analysing insurance claims for acceptance or rejection. Cascades
often occurred as a result of limited application-domain understand-
ing of subjective labelling. In our study, practitioners often worked
with several resource constraints of domain expertise and time,
unable to use best practice data quality metrics for computing inter-

and intra-rater reliability (e.g., [10]). With no direct indicators of
subjective shortcomings in data, cascades from ground truth issues
were discovered through ‘manual reviews’ of data with clients or
field partners, and often, through downstream impacts. Consider an
example of P28, an educational Al engineer building an interactive
writing model for students (country blinded) reported that they
had not considered the impacts on low-income students or students
with different English writing styles [5]. In some cases, ground
truth was inaccurate but deeply embedded into systems, as in the
case of P6 (credit assessment, India), “decisions taken by insurance
companies in the past about accepting or denying claims, for 10-15%
of the time, the ground truth itself is inaccurate. If the wrong decision
[subjective] was taken, there is no way to go back in historical data to
correct [...] Two different people have different perspectives on whether
claims should be accepted or rejected. How can you tell whether data
is inaccurate or accurate? It introduces errors in our models.”
Cascades triggered by poor application-domain expertise in finding
representative data
For an Al model to generalise well, it needs to be trained on rep-
resentative data reflective of real-world settings. Second to data
collection, understanding and collecting representative data was the
biggest challenge for practitioners in high-stakes domains. Cascades
occurred because of a default assumption that datasets were reliable
and representative, and application-domain experts were mostly
approached only when models were not working as intended. Cas-
cades from non-representative data from poor application-domain
expertise manifested as model performance issues, resulting in re-
doing data collection and labelling upon long-winded diagnoses. It
is important to note that representativeness has a different inter-
pretation for every domain and problem statement. With limited
application-domain expertise, practitioners described how incom-
plete knowledge and false assumptions got incorporated into model
building. A few practitioners relied on domain experts to define
what representative data meant for their problem statement, e.g.,
the classification of carcinomas in West African countries and how
it varied in different populations (P39, healthcare, a West African
country), or how farm produce defects manifest in different va-
rieties and geographies (P24, agriculture, India). In cases where
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practitioners understood the need for representative data and its
meaning in their context, they faced challenges in collecting this
data without the right field partnerships. Representative data cas-
cades sometimes stemmed from a disparity in contexts between
data collection and system deployment. As P52 (healthcare, India)
describes in the context of sampling, “are we taking 90% of the data
from one hospital and asking to generalise for the entire world?”.
4.3.3  Conflicting reward systems (32.1%). Misaligned incentives
and priorities between practitioners, domain experts, and field part-
ners led to data cascades. An example of this cascade is how P27’s
(wildlife conservation, US) dataset rendered their ML model dys-
functional, “Often they forgot to reset their setting on the GPS app
and instead of recording every 5 minutes, it was recording [the data]
every 1 hour. Then it is useless, and it messes up my whole ML algo-
rithm”, Conventional Al data practices of viewing data collection
as outsourced and non-technical tasks, and a lack of understanding
provenance, as well as misaligned incentives and poor data literacy
among stakeholders, appeared to contribute to this data cascade.
Practitioners saw the impacts of this cascade discovered well into
deployment, through costly iterations, moving to an alternate data
source, or quitting the project altogether.

As mentioned earlier, high-stakes domains lacked pre-existing
datasets, so practitioners were necessitated to collect data from
scratch. ML data collection practices were reported to conflict with
existing workflows and practices of domain experts and data col-
lectors. Limited budgets for data collection often meant that data
creation was added as extraneous work to on-the-ground partners
(e.g., nurses, patrollers, farmers) who already had several responsi-
bilities, and were not adequately compensated for these new tasks.
Data collection and labelling tasks was often a competing priority
with field partners’ primary responsibility. As P7 (healthcare, India)
shared, “when a clinician spends a lot of time punching in data, not
paying attention to the patient, that has a human cost”.

Field partners, especially at the frontlines, were reported to have
limited data literacy and face information symmetry issues with
not knowing the importance of their data collection, purpose of
the Al system, and the importance of such constraints for the ML
data, e.g., in P21’s (healthcare, India) case, “doctors didn’t want
to do the test [for Al data collection] for so long. Almost 25-30%
recordings were less than 10 minutes which are not useful for any
[AI] analysis. We had to work with the doctor to tell them why it is
important to capture that kind of length of the data.”. A healthcare
startup founder from India, P22, shared an account of speaking to
a community health worker in India, and why the health worker
eventually became unmotivated to complete their data work: “[they
quoted] Whatever work I do or I don’t do, my salary is 3K [INR] per
month. Earlier I did everything (collected good data), but my salary
did not increase.”. Top-level management was reported to often
enter mutually synergistic partnerships, through joint research
publications or media attention, but not the frontline workers whose
labour benefited Al data collection. In a few cases, field workers
were reported to fabricate data from either no or per-task incentives.

Some Al practitioners were aware of, and explicitly discussed
problematic incentives for their data collectors or domain experts,
and shared how they were resource-constrained (echoing Ismail
and Kumar [58]). Some reflected on how providing more trans-
parency and information about the scope of the project could have
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helped their field partners. In practice, data literacy training (e.g.,
entering well-formatted values, educating about the impacts of
their data collection) was rarely conducted, resulting in numerous
data quality challenges like data collectors not recording data for a
specific duration or frequency. In the rare case where practitioners
trained their field partners, data quality was reported to go up, as
in the case of P7 (healthcare, India), who described how provid-
ing real-time data quality indicators enabled their field partners
to become conscious of data quality in-situ. (In a few cases, data
collectors gathered specialised domain expertise from working on
ML projects and up-skilled to starting new businesses, e.g., seed
identification.) In a few cases where incentives were explicitly dis-
cussed as being provided, high monetary incentives sometimes led
to over-sampling, skewing the data.

4.3.4  Poor cross-organisational documentation (20.8%). Data cas-
cades were set off by a lack of documentation across various cross-
organisational relations (within the organisation, with field partner
organisations and data collectors, and with external sources). Prac-
titioners discussed several instances where collected and inherited
datasets lacked critical details. Missing metadata led practitioners
to make assumptions, ultimately leading to costly discarding of
datasets or re-collecting data. As an example of a data cascade, P8
(robotics, US), described how a lack of metadata and collaborators
changing schema without understanding context led to a loss of
four months of precious medical robotics data collection. As high-
stakes data tended to be niche and specific, with varying underlying
standards and conventions in data collection, even minute changes
rendered datasets unusable. Conventional Al practice of neglecting
the value of data documentation, and field partners not being aware
of constraints in achieving good quality Al appeared to set these
cascades off. Cascades became visible through manual reviews, but
often by ‘chance’. The impacts of cascades here included wasted
time and effort from using incorrect data, being blocked on build-
ing models, and discarding subsets or entire datasets (not always
feasible to re-collect resource-intensive data, as we explain above).

Metadata on equipment, origin, weather, time, and collection
process was reported to be critical information to assess quality,
representativeness, and fit for use cases. As P7, a researcher in India
explained the importance of context in data, “In my experience, in
medicine, the generalisation is very poor. We have been trying to
look at what really generalises in cross continental settings, across
[American hospitals] and [Indian hospitals]. More than data quality
it is the auxiliary, lack of metadata that makes all the difference [...] If
we look at signals without the context, it makes it difficult to generalise
the data.” However, in most cases where practitioners did not have
access to the metadata, they had to discard the data point or subset
of data altogether. P13, working on criminal justice systems in India
explained, “We have seen that it depends a lot on when the data was
collected. If it was over a year [ago], there is some correlation between
the season and the time of year the data was collected.[...] again in
most of the data we have missing information. We have to reject the
entire data that might be relevant for this particular problem.”

In dealing with a lack of metadata, practitioners made assump-
tions about the datasets, like in the case of P20 (clean energy, US),
who assumed certain timestamps on power plant data because meta-
data was missing, “but the plant was mapped incorrectly, mismatch
of timestamps between power plant and satellite. Very hard to tell
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when you don’t own the sensors. You have to make assumptions and
go with it.” Many practitioners expressed frustration from a lack
of standards to help document datasets (e.g., using Lagos versus
Lagos State due to lack of metadata).

In a few cases where metadata cascades were avoided, practi-
tioners created reproducible assets for data through data collection
plans, data strategy handbooks, design documents, file conventions,
and field notes. For example, P46 and P47 (aquaculture, US) had an
opportunity for data collection in a rare Nordic ocean environment,
for which they created a data curation plan in advance and took
ample field notes. A note as detailed as the time of a lunch break
saved a large chunk of their dataset when diagnosing a data issue
downstream, saving a precious and large dataset.

5 DISCUSSION

Our results indicate the sobering prevalence of messy, protracted,
and opaque data cascades even in domains where practitioners
were attuned to the importance of data quality. Individuals can
attempt to avoid data cascades in their model development, but a
broader, systemic approach is needed for structural, sustainable
shifts in how data is viewed in Al praxis. We need to move from
current approaches that are reactive and view data as ‘grunt work’.
We need to move towards a proactive focus on data excellence—
focusing on the practices, politics, and values of humans of the
data pipeline to improve the quality and sanctity of data, through
the use of processes, standards, infrastructure and incentives (and
other interventions, as identified by Paritosh et al. [92]). Any no-
tion of data excellence should also explicitly engage with shifting
the power centres in data resources between the Global South and
North. We identify opportunities to further expand HCI’s role as the
conscience of the computing world and its long-standing commit-
ment to data, through implications for human-centred incentives,
processes, metrics, and interfaces for data excellence in high-stakes
domains. While our analysis is limited to high-stakes Al projects,
we believe these challenges may exist in more or less amplified
forms in all of Al development.

From goodness-of-fit to goodness-of-data The current Al
revolution is metrics-driven, as Thomas points out ([120]), but
practitioners largely used system metrics to measure the goodness
of the fit of the model to the data. Goodness-of-fit metrics, such as
F1, Accuracy, AUC, do not tell us much about the phenomenological
fidelity (representation of the phenomena) and validity (how well
the data explains things related to the phenomena captured by
the data) aspects of the data. Currently, there are no standardised
metrics for characterising the goodness-of-data [11, 13]; research on
metrics is emerging [15, 91] but not yet widely adopted in Al system
building. As a result, there is an extreme reliance on goodness-of-fit
metrics and post-deployment product metrics. First, these metrics
give us no assurances about the quality of the data. Second, they
are too late to detect and course-correct from the unforeseen effects
of data cascades. Even more importantly, deployment of Al systems
in high-stakes domains eventually exposes aspects of phenomenon
that were not captured in the dataset, which can produce spurious
and risky outcomes, as pointed out by Floridi et al. [37] and Burt
and Hall [24]. To illustrate the importance of goodness-of-data
metrics, consider a model that is trying to recognise whether a
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given location can be a poaching target. Given an arbitrary dataset
of labelled, prior poaching attempts, one can train and evaluate the
model on a held-out set to estimate the goodness-of-fit of the model
to the data. Note that while these metrics tell us about the fit of the
model, they do not tell us anything about the quality of the dataset.
Wildlife Al practitioners reported how they retroactively needed
to understand information on where poaching typically took place;
whether a human was a villager, wildlife professional, or poacher;
whether an area was a farmland or forest; where the water sources
were, and so on—which they had not captured in their datasets and
ground truth. It is easy to imagine a model with a perfect fit to a
very narrow slice of the data—and show high performance—and
starting to reveal its weaknesses as it is used to make decisions
outside of that narrow slice, where it can fail in immeasurable and
unforeseen ways.

While collecting rigorous data from, and about, humans is rel-
atively uncharted waters for Al researchers, there is a rich body
of research in HCI that is crucial in even framing these questions
appropriately—opening up a whole new space for HCI to act as the
compass for Al by answering questions about goodness, fidelity,
and validity of data by itself, as HCOMP researchers have pointed
out [12, 90]. Similarly, recognizing the relevance of viewing data-
in-place [118]—the situatedness of data within social and physical
geographies—i.e., the dynamic after-life of data once models are
deployed, will help evaluate how models interact and impact liv-
ing beings and artefacts. Emerging scholarship like Beede et al. ’s
evaluation of real-world deep learning systems [17] point to the
need for incorporating HCI early and throughout in AI data. A
whole new science of data is needed, with HCI partnership, where
sorely needed phenomenological goodness-of-data metrics need
to be developed. Making progress on measuring goodness-of-data
will enable early-stage assessment and feedback in the data collec-
tion process, and will likely surface data-phenomena gaps earlier,
avoiding data cascades. Focusing on phenomenological validity of
data will further increase the scientific value and reusability of the
data (a precious entity in high-stakes domains). Such research is
necessary for enabling better incentives for data, as it is hard to
improve something we can not measure.

Incentives for data excellence Contrary to the scientific, de-
signerly, and artful practices observed in prior HCI studies on data
scientists by Feinberg [35], Muller et al. [86], and Patel et al. [96], AI
practitioners in our study tended to view data as ‘operations’. Such
perceptions reflect the larger AI/ML field reward systems: despite
the primacy of data, novel model development is the most glamor-
ised and celebrated work in Al—reified by the prestige of publishing
new models in Al conferences, entry into AI/ML jobs and residency
programs, and the pressure for startups to double up as research di-
visions. Critics point to how novel model development and reward
systems have reached a point of ridicule: Lipton calls ML scholar-
ship ‘alchemy’ [74], Sculley et al. describe ML systems as ‘empirical
challenges to be ‘won” [112], Bengio describes ML problems as ‘in-
cremental’ [18], and plagiarism by ML educators has been labelled
as the ‘future of plagiarism’ [14]. In contrast, datasets are relegated
to benchmark publications and non-mainstream tracks in AI/ML
conferences [46, 82]. New Al models are measured against large,
curated data sets that lack noise (to report high performances), in
contrast to the dynamic nature of the real world [64, 78]. In addition
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to the ways in which business goals were orthogonal to data (also
observed by Passi and Sengers [95]), practitioners described how
publication prestige, time-to-market, revenue margins, and com-
petitive differentiation often led them to rush through the model
development process and sometimes artificially increase model ac-
curacy to deploy systems promptly, struggling with the moral and
ethical trade-offs.

We take inspiration from Sculley et al. [112] and Soergel et al.
[114] to propose starting points for changing structural incentives
for the market, academy, and capital of AI/ML. Conferences are a
good starting point: data powers the inferences, and empiricism on
data should be mainstream. Conferences like SIGCHI, CSCW, and
AAAI are good examples of recognising the importance of research
on data through their disciplinary conventions, e.g., crowd work,
human computation, and data visualization. Papers on AI/ML tech-
niques should evolve to offer dataset documentation, provenance,
and ethics as mandatory disclosure. Standard research process as
relevant to the research community, e.g., hypotheses, design, ex-
periments, and testing should also be followed with data [28, 55].
Organisations should reward data collection, pipeline maintenance,
gluework, data documentation, and dataset repairs in promotions
and peer reviews, similar to how good software engineering is re-
warded. Similarly, complementing Meller et al. [85], we note that
data labour is currently lopsided, fuelling the benefit of Al practi-
tioners, and dis-empowering application-domain experts and field
partners. Data excellence emphasises the value in sustained part-
nerships, as opposed to engagements with experts on a one-off
basis (during problem formulation or sensemaking only). Some in-
stances of partnerships needed throughout the ML pipeline include
formulating the problem and outcomes, identifying anomalies, de-
termining optimal frequency for data collection, verifying model
outcomes, and giving feedback on model behaviour. Greater collab-
oration, transparency into Al application use-cases, data literacy,
and ‘shared rewards’ (e.g., joint publications and releases) are some
ways to engender ‘data compassion’ (P37), and recognise and learn
from expertise. Learning from HCI scholarship on ways to recog-
nise the human labour in preparing, curating, and nurturing data
that powers Al models [34, 117], among crowd workers [34, 57, 79],
office clerks [85], and health workers [58] can be helpful. For ex-
ample, Martin et al. [79] through their understanding of MTurker
perspectives, call for tools to help reduce and manage all the in-
visible, background work by Mturkers. Mgller et al. [85] created a
toolkit for stakeholders to identify and value data work, and Ismail
and Kumar call for embracing solidarity through design [58].

Real-world data literacy in Al education A majority of cur-
ricula for degrees, diplomas, and nano-degrees in Al are concen-
trated on model development [42], leaving graduates under-prepared
for the science, engineering, and art of working with data, includ-
ing data collection, infrastructure building, data documentation,
and data sense-making. Toy datasets and open datasets with un-
known characteristics are abundant in Al education, like in the UCI
census dataset [4]. In practice, cutting-edge Al applications often
require unique datasets created from scratch, as a necessity, and
a competitive advantage; but the practical data skill gaps among
our practitioners were quite large from their formal education
and training. Data collection in high-stakes domains is an inter-
disciplinary activity, and requires engaging in data sensemaking
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activities as described by Koesten et al. [68], often without ade-
quate application-domain expertise, working with domain experts,
as well as knowledge of methodologies for collecting data from
experts. Unfortunately, as it stands, there is often a lack of involve-
ment and appreciation for application-domain experts in AI/ML.
An oft-quoted quip in the Natural Language Processing community:
“Every time I fire a linguist, the performance of the speech recognizer
goes up” attributed to Frederick Jelinek [49], reflects the hostility
towards domain expertise. Early progress in the field—the low hang-
ing fruits relying on quantity alone—no longer applies to harder,
more subjective problems and edge cases. Entire under-represented
groups can show up as edge cases, with profound social implica-
tions [88]. For instance, Scheuerman et al. [110] found that facial
analysis technologies were unable to identify non-binary genders.
Training on data collection, curation, and inter-disciplinary collab-
oration can help prepare future practitioners. Fortunately, there is
a massive body of research in HCI, Human Computation, and allied
fields on empirical methods [32] that can be added to Al curricula.
Data ethics and responsible Al education, oversight boards e.g.,
IRB, and ethics standards should be necessary components of Al
education and praxis, given the field’s increasing expansion into
high-stakes, humanitarian areas (e.g., how our practitioners, despite
their intentionality, were under-equipped to understand human
impacts)—a call to action invoked by ethics and education scholars
like Saltz et al. [105].

Better visibility in the AI data lifecycle Data cascades point
to the need for several feedback channels at different time scales in
the Al life cycle. With delayed and hidden manifestation, practition-
ers struggled with understanding the impact of data scrutiny, and
utilised ‘launch and get feedback’ approaches frequently, often at
great cost. The teams with the least data cascades had step-wise feed-
back loops throughout, ran models frequently, worked closely with
application-domain experts and field partners, maintained clear
data documentation, and regularly monitored incoming data. Data
cascades were by-and-large avoidable through intentional practices,
modulo extrinsic resources (e.g., accessible application-domain ex-
perts in the region, access to monetary resources, relaxed time
constraints, stable government regulations, and so on). Although
the behaviour of Al systems is critically determined by data, even
more so than code [111]; many of our practitioner strategies mir-
rored best practices in software engineering [38, 83]. Anticipatory
steps like shared style guides for code, emphasising documentation,
peer reviews, and clearly assigned roles—adapted to data—reduced
the compounding uncertainty and build-up of data cascades.

Current inspection and analysis tools tend to focus on dataset
distributions and wrangling (e.g., Trifacta?, FACETS!?, and Open-
Refine!l) as ways to improve data quality, whereas the upstream
work of defining dataset requirements and downstream challenges
of monitoring incoming live data and measuring impacts often
does not receive the critical attention it needs from the HCI and
AI communities. Just as designer Bret Victor described, we now
have tools “to adapt unthinkable thoughts to the way that our minds
work” [124], we now need better tools to collect, interpret, and
observe data to transform the current practices in the upstream and

https://www.trifacta.com/
Ohttps://pair-code.github.io/facets/
https://openrefine.org/
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downstream. Customizable tools for dataset collection and labelling
can significantly improve data quality, in the place of in-house, cob-
bled together solutions. Live data from systems in production was
consistently reported to spring up surprise drifts and affect model
inferences, but comprehensive solutions are lacking. Dataset docu-
mentation is under-developed, unlike code documentation [127],
e.g., design documents, meeting notes, project diaries, and rater
instructions; but standards here can help reduce uncertainty.

Data equity in the Global South Our study points to how
AI/ML technologies were widely accessible and democratic to new
entrants, across geographies, through open-sourced and pre-trained
models, easy-to-access courses and codebases, and grassroots com-
munities. Al practitioners across geographies appeared to have
similar access to models. However, we find drastic differences when
it comes to data and compute in East and West African countries [2]
and India [3], compared to the US. With limited digital infrastruc-
tures and fewer socio-economic datasets, data collection was often
done from scratch through field partners and in-house efforts. Data
collection involved navigating vague data policies and regulation,
manual efforts to hand-curate data, and introducing Al literacy to
partners—efforts above and beyond what practitioners were trained
or equipped to do. Our findings echo the insights of ICTD and
AT4SG scholarship on the realities of data scarcity and quality chal-
lenges e.g., [31, 98, 107], understanding socio-cultural factors e.g.,
[20, 109], and complex partner and government relations e.g., [22]
in Al projects in the Global South. Invoking Sambasivan et al. , we
argue that the data disparities are symptoms of the larger, uneven
ML capital relations in the world, where the Global South is viewed
as a site for low-level data annotation work, an emerging market
for extraction from ‘bottom billion’ data subjects, or a beneficiary of
Al for social good [107]. Developing and publishing open-sourced
(de-identified) datasets, data collection tools, and trainings for defin-
ing the right data with application-domain expert knowledge can
help mitigate the cold start problem. Greater ML literacy among
civil society and clients can evolve high-stakes Al into a synergistic
endeavour; being aware of, and asking the right questions of ML
systems could help shift the focus from hacking model accuracy
for performative reasons, to data excellence. Highlighting ongo-
ing high-stakes Al projects and successes to both raise awareness
and to provide a roadmap is essential to addressing the current
inequities in data resources globally.

6 CONCLUSION

As Al becomes part and parcel of decision-making of core aspects
of life, the sanctity and quality of data powering these models
takes on high importance. We presented a qualitative study of data
practices and challenges among 53 Al practitioners in India, East
and West African countries, and the US, working on cutting-edge,
high-stakes domains of health, wildlife conservation, food systems,
road safety, credit, and environment. We observed and presented
data cascades, often long-run, invisible, and compounding effects
on Al models. The effects typically occurred as a result of applying
conventional AI/ML practices in high-stakes domains—many of the
conventional practices did not transfer neatly, and often resulted
in serious impacts like community harms, discarded projects, and
redoing data collection. Data cascades were typically triggered in

Sambasivan et al.

the upstream and appeared unexpectedly in the downstream of
deployment. System-level proxy metrics were utilised, which are
only available towards the end of the development lifecycle, and do
not shed light on data quality and its fidelity to phenomena. HCI
has a crucial role to play in Al data excellence, through interfaces,
measurement, incentives, and education, especially in fragile and
vulnerable domains.
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